Studies on the mechanisms of arsenic-induced self tolerance developed in liver epithelial cells through continuous low-level arsenite exposure.
نویسندگان
چکیده
Arsenic (As) is a human carcinogen. Our prior work showed that chronic (>18 weeks) low level (500 nM) arsenite (As3+) exposure induced malignant transformation in a rat liver epithelial cell line (TRL 1215). In these cells, metallothionein (MT) is hyper-expressible, a trait often linked to metal tolerance. Thus, this study examined whether the adverse effects of arsenicals and other metals were altered in these chronic arsenite-exposed (CAsE) cells. CAsE cells, which had been continuously exposed to 500 nM arsenite for 18 to 20 weeks, and control cells, were exposed to As3+, arsenate (As5+), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), antimony (Sb3+), cadmium (Cd2+), cisplatin (cis-Pt), and nickel (Ni2+) for 24 h and cell viability was determined by metabolic integrity. The lethal concentration for 50% of exposed cells (LC50) for As3+ was 140 microM in CAsE cells as compared to 26 microM in control cells, a 5.4-fold increase in tolerance. CAsE cells were also very tolerant to the acute toxic effects of As5+ (LC50 > 4000 microM) compared to control (LC50 = 180 microM). The LC50 for DMA was 4.4-fold higher in CAsE cells than in control cells, but the LC50 for MMA was unchanged. There was a modest cross-tolerance to Sb3+, Cd2+, and cis-Pt in CAsE cells (LC50 1.5-2.0-fold higher) as compared to control. CAsE cells were very tolerant to Ni2+ (LC50 > 8-fold higher). Culturing CAsE cells in As(3+)-free medium for 5 weeks did not alter As3+ tolerance, implicating an irreversible phenotypic change. Cellular accumulation of As was 87% less in CAsE cells than control and the accumulated As was more readily eliminated. Although accumulating much less As, a greater portion was converted to DMA in CAsE cells. Altered glutathione (GSH) levels were not linked with As tolerance. A maximal induction of MT by Zn produced only a 2.5-fold increase in tolerance to As3+ in control cells. Cell lines derived from MT normal mice (MT+/+) were only slightly more resistant (1.6-fold) to As3+ than cells from MT null mice (MT-/-). These results show that CAsE cells acquire tolerance to As3+, As5+, and DMA. It appears that this self-tolerance is based primarily on reduced cellular disposition of the metalloid and is not accounted for by changes in GSH or MT.
منابع مشابه
Arsenic and Oxidative Stress in Pentylenetetrazole-induced Seizures in Mice
Background and Objective: Chronic arsenic toxicity is a widespread problem; the role of brain oxidative stress has been suggested in the genesis of epilepsy and in the post-seizure neuronal death. However, studies investigating the effects of arsenic on seizure and related mechanisms are limited. The purpose of this study was to examine the effect of prolonged exposure to sodium arsenite on oxi...
متن کاملInhibitory effect of concomitant administration of Zataria multiflora Boiss. against oxidative damage-induced by sub-acute exposure to arsenic in rats
To evaluate the protective effect of Zataria multiflora boiss. (Zm) extract against arsenic-induced oxidative damage in rats. Rats were orally treated with various doses of Zm (200, 400, and 600 mg/kg) and sodium arsenite (5.5 mg/ kg), alone or in combination, once daily for 30 consecutive days. Twenty-four hours after the last dose, rats were euthanized, and biochemical studies were conducted ...
متن کاملEMT and Stem Cell-Like Properties Associated with HIF-2α Are Involved in Arsenite-Induced Transformation of Human Bronchial Epithelial Cells
BACKGROUND Arsenic is well-established as a human carcinogen, but the molecular mechanisms leading to arsenic-induced carcinogenesis are complex and elusive. It is not been determined if the epithelial-mesenchymal transition (EMT) and stem cell-like properties contribute in causing to carcinogen-induced malignant transformation and subsequent tumor formation. METHODS To investigate the molecu...
متن کاملOpposed arsenite-induced signaling pathways promote cell proliferation or apoptosis in cultured lung cells.
Arsenic is a well-known carcinogen that possibly promotes tumors and the development of various types of cancer in individuals chronically exposed to arsenic in their work or living environment. Many studies have demonstrated the activation of mitogen-activated protein kinase (MAPK) in several cell types by using lethal concentrations of arsenic in the range of 50-500 micro M. Since the exposur...
متن کاملMicroarray dataset of transient and permanent DNA methylation changes in HeLa cells undergoing inorganic arsenic-mediated epithelial-to-mesenchymal transition
The novel dataset presented here represents the results of the changing pattern of DNA methylation profiles in HeLa cells exposed to chronic low dose (0.5 µM) sodium arsenite, resulting in epithelial-to-mesenchymal transition, as well as DNA methylation patterns in cells where inorganic arsenic has been removed. Inorganic arsenic is a known carcinogen, though not mutagenic. Several mechanisms h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 54 2 شماره
صفحات -
تاریخ انتشار 2000